HALCON Steady

What does HALCON Steady License offer you?

  • Receive new HALCON features with the next major version
  • New release ~every 2 years
  • Regular purchase (one time payment)
  • Lifelong free support
  • Regular maintenance updates
  • Deep Learning module can be purchased additionally

HALCON Steady 20.11

Here we publish the main features of the new version of MVTec HALCON


Improved Surface-based 3D-Matching

In HALCON 20.11, the core technology, edge-supported surface-based 3D-matching, is significantly faster for 3D scenes containing many objects and edges.

In addition to this speedup, the usability has been improved by removing the need to set a viewpoint.


DotCode and Data Matrix Rectangular Extension

In HALCON 20.11, the data code reader has been extended by the new code type, DotCode. This type of 2D code is based on a matrix of dots. It can be printed very quickly and is especially suitable for high speed manufacturing lines, like those used in the tobacco industry.

Furthermore, the ECC 200 code reader now supports the Data Matrix Rectangular Extension (DMRE).


Deep OCR

Deep OCR is a holistic deep-learning-based approach for OCR. This new technology brings machine vision one step closer to human reading.

Compared to existing algorithms, Deep OCR can localize characters much more robustly, regardless of their orientation, font type and polarity. The ability to automatically group characters allows the identification of whole words. This strongly increases the recognition performance since, e.g., misinterpretation of characters with similar appearances can be avoided.


Improved Shape-based Matching

In HALCON 20.11, the core technology, shape-based matching, has been improved.

More parameters are now estimated automatically. This increases usability as well as the matching rate and robustness in low contrast and high noise situations.


HDevelop Facelift

For enhanced usability, HALCON’s integrated development environment HDevelop has been given a facelift.

In HALCON 20.11, more options for individual configurations have been implemented, featuring e.g., a dark mode and a new modern window docking concept. Moreover, themes are now available to improve visual ergonomics and to suit individual preferences.


Deep Learning Edge Extraction

Deep learning edge extraction is a new and unique method to robustly extract edges (e.g., object boundaries) that comes with two major use cases.

Especially for scenarios where a variety of edges is visible in an image, it can be trained with only few images to reliably extract the desired edges. Hence, the programming effort to extract specific kinds of edges is highly reduced with this version of MVTec HALCON. Besides, the pretrained network is innately able to robustly detect edges in low contrast and high noise situations. This makes it possible to extract edges that usual edge detection filters cannot detect.


HALCON/Python

HALCON 20.11 introduces a new HALCON/Python interface. This enables developers who work with Python to easily access HALCON’s powerful operator set.


Previous Versions

Last Steady Edition release: HALCON 18.11 – this is the older version available as Steady Edition.

To learn more about the HALCON Editions, click here.

Contact: sales@lucidimaging.in for more info and pricing.